skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Lijie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We carry out Monte Carlo simulations on fluid membranes with orientational order and multiple edges in the presence and absence of external forces. The membrane resists bending and has an edge tension, the orientational order couples with the membrane surface normal through a cost for tilting, and there is a chiral liquid crystalline interaction. In the absence of external forces, a membrane initialized as a vesicle will form a disk at low chirality, with the directors forming a smectic-A phase with alignment perpendicular to the membrane surface except near the edge. At large chirality a catenoid-like shape or a trinoid-like shape is formed, depending on the number of edges in the initial vesicle. This shape change is accompanied by cholesteric ordering of the directors and multiple p walls connecting the membrane edges and wrapping around the membrane neck. If the membrane is initialized instead in a cylindrical shape and stretched by an external force, it maintains a nearly cylindrical shape but additional liquid crystalline phases appear. For large tilt coupling and low chirality, a smectic-A phase forms where the directors are normal to the surface of the membrane. For lower values of the tilt coupling, a nematic phase appears at zero chirality with the average director oriented perpendicular to the long axis of the membrane, while for nonzero chirality a cholesteric phase appears. The p walls are tilt walls at low chirality and transition to twist walls as chirality is increased. We construct a continuum model of the director field to explain this behavior. 
    more » « less
  2. null (Ed.)
    Motivated by experiments on colloidal membranes composed of chiral rod-like viruses, we use Monte Carlo methods to simulate these systems and determine the phase diagram for the liquid crystalline order of the rods and the membrane shape. We generalize the Lebwohl–Lasher model for a nematic with a chiral coupling to a curved surface with edge tension and a resistance to bending, and include an energy cost for tilting of the rods relative to the local membrane normal. The membrane is represented by a triangular mesh of hard beads joined by bonds, where each bead is decorated by a director. The beads can move, the bonds can reconnect and the directors can rotate at each Monte Carlo step. When the cost of tilt is small, the membrane tends to be flat, with the rods only twisting near the edge for low chiral coupling, and remaining parallel to the normal in the interior of the membrane. At high chiral coupling, the rods twist everywhere, forming a cholesteric state. When the cost of tilt is large, the emergence of the cholesteric state at high values of the chiral coupling is accompanied by the bending of the membrane into a saddle shape. Increasing the edge tension tends to flatten the membrane. These results illustrate the geometric frustration arising from the inability of a surface normal to have twist. 
    more » « less